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Gene Expression Can Discriminate Between Pathogens




Can We Classify Acute Respiratory Viral lliness?

 Hypotheses:

Peripheral blood gene expression at time of peak symptoms in
experimentally infected cohorts can differentiate between
symptomatic and asymptomatic subjects

The above derived peripheral blood gene expression signatures
can accurately classify other subjects with viral respiratory infection
and differentiate viral from bacterial infection

* Methodology:

Serial sampling and symptom scores of experimentally infected
individuals

Unsupervised analysis of peripheral blood gene expression data at

time of peak symptoms —v
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Human Viral Challenge Sites: HRV, RSV, Influenza A

RSV Challenge (Brentwood, UK 7/2008)

Influenza Challenge (Cambridge, UK 10/2008)
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Human Viral Challenges: Symptom Scores
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Study Design

Rhinovirus Cohort

10 Symptomatic
10 Asymptomatic

RSY Cohort

9 Symptomatic
10 Asymptomatic

Influenza A Cohort

9 Symptomatic
8 Asymptomatic

Leave one
out cross
validation

Zaas AK, et al. Cell
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Sparse latent factor regression analysis on combined dataset
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Development of 30 gane probit
classifier for

symptomatic respiratory viral infection

¥

Determine predictive accuracy of 30
gene classifier on independent data set
of subjects with
MO INFECTION,
INFLUENZA INFECTION, or
BACTERIAL INFECTION
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Sparse Latent Factor Regression Analysis

« Latent Factor = Co-expressing genes = Signature

« Assumes MOST genes on array do not have differential expression
between varied conditions (“sparseness”)

* “Unsupervised”: does not use class information to derive factors
« Signature can be used to classify new samples as they become available

Design Matrix / Latent Factors
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Corresponding G ene Expression (Norm alized)

IR LR RN 8

1] [i]
HL S = 4 HL B, = 4 BL B =1 *
l I >11

KE INSTITUTE FOR

"ENOME

U T W
IENCES & POLICY

5 )

wn
N



An “Acute Respiratory Viral” Sighature Dominates at
Time T

Table 2. Intra-Data Set Probit Classification Cross-Validation

Results

Test: HRV Test: RSV Test: Influenza
Train: HRV 1/30 (RSAD2)  2/29 [RTP4)  0/25 (ISG15)
Train: RSV 1/30 (RSAD2) 2/29 (RTP4)  0/25 (I5G15)

Train: Influenza  1/30 (RSAD2)  2/29 (RTP4)  0/25 (ISG15)

The error rate is shown based on the top gene (noted in parentheses)
selected from the training set probit classifier. For this model, the top

40 genes from the training set discriminative factor ware used to build
the probit classifier for testing in the validation data set.




The Acute Respiratory Viral Signature Validates in a

Historical Cohort
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The Acute Respiratory Viral Signature Validates in a

Historical Cohort
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Conclusions: Classification is Highly Accurate at
Maximal Symptoms

« Sparse latent regression analysis identifies a gene expression
sighature that accurately classifies experimentally infected
individuals with symptomatic viral respiratory infection at time of
maximal symptoms

 Genes contained in this signature have direct relationship to known
viral response pathways

« Attime of maximal symptoms, a “pan-viral” signature is dominant

 This methodology, and other methodologies, can be used to
develop classifiers that function at earlier timepoints
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What About Earlier Than Maximal Symptoms?

Rhinovirus Symptoms RSV Symptoms

/$$$

/
ﬁ
1

Jackson Score
2

é

N

RSVO11
5- o '} ; R M A A
_—rovuia
0- T T ! RSV020
0 2 580 75 100 125 150 175
Time (hrs)
12 —— FILO01 Cohort Number Number _ Median Time “T":
114 Flu005 Exposed | Symptomatic | Time to Peak
§ 1& AL Symptoms
g — FL007 Rhinovirus | 20 10 72 hours
6- — Flu008
i Fu010 RSV 20 8 141.5 hours
3+ — Flu012
%— — AUD13 Influenza 17 9 80 hours
o N~ FILO15
0 25 & 75 100 125 150

Time (hrs)




Early Emergence of the “Acute Respiratory Viral”
Factor

Emergence of the “Acute Respiratory Viral Factor’” Prior
to Time of Peak Symptoms in Experimental Cohorts
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Can We Move Detection Earlier?

« 1) Improve on the sensitivity of detection
« RT-PCR
 Dynamic range of gene expression greater than Affymetrix
array

« Potential to build classifier on basis of degree of gene
expression

« Potential to reduce the number of genes in the classifier

« 2)Use additional statistical methods to achieve earlier
classification

« Bayesian Elastic Net

« 3) Use combination of clinical (i.e. symptoms/physical signs) and

molecular (i.e. gene expression) data to achieve earlier
I..PA...
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From Healthy Adults to Immunocompromised?

« Paradigm increases in complexity as host increases in complexity

« Perhaps can extrapolate healthy young adults to healthy kids

* Important parameters to consider

Effect of iImmunosuppressive regimens on “baseline” gene
expression

Difficulties with specimen procurement in
neutropenial/leukopenia (adequate cells for RNA extraction)

Co-infection, effect of herpesvirus reactivation
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Invasive Candidiasis — An Important Medical Problem

Candidemia is common and life-

threatening s
4th most common nosocomial BSI' 10
*Excess mortality rates: 10% — 49% 3
*Average total cost of candidemia:

$44,5362 £
Current diagnostic paradigms Y |
Inadequate ;'_ - |

*Variable and nonspecific presentation
*Gold standard for diagnosis: blood
culture

*Sensitivity approximately 50%
*Delay in appropriate therapy
increases mortality3

Mlartaliny (s

— == ek bl Cad
I—14

_— M

Culture day Day | Day 2 Day 2 3

Days o start of Muconazole

TTTT

DUKE institute For
N CENOME
SCIENCES & POLICY




Hypothesis

Predictive models based on global
changes in gene expression of
peripheral blood immune cells can
distinguish between infectious causes
of illness, particularly candidemia vs.
bacteremia.
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Study Design

s

-* Collections at
¥ 24, 48, 72, and
96 hrs
C. albicans:
discovery (n = 28)
validation (n=12)
PBS (n=12;5)
S. aureus (n = 12) RNA Extraction &
Globin Reduction
Validation |s there a Signature? @
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A Disease-Defining Factor
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Gene Expression Can Distinguish Between Candidemia and S.
aureus Bacteremia
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Proposed Clinical Application

High Risk Host

(ICU, Abdominal Surgery, Broad Spectrum Antibiotics)
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Candida: Conclusions

« Distinct gene expression
signatures can identify murine
candidemia

« (Gene expression signatures
change with disease severity

» Genes contained in signature
(“factor”) are involved in host-
pathogen response

 Validation vs. bacteremia AND
in human cohort needed

Admission SICU 2 72 hours and expected to stay an additional 48 hours

*IV access
*Age >18
Specimen Specimen Analysis
Procurement
1. Bi-weekly blood draw while Other Data Retrospgctive RNA isolation
in SICU for retrospective Collection from patients with blood

glucan testing and PAXgene for
RNA isolation, CBC

2. Blood culture,CBC and PAXgen
if febrile

e

Baseline and ICU d/c
oral fungal culture

Weekly clinical evaluation

cultures + for Candida, OR S.
aureus OR negative cultures
and negative B-glucan testing
(controls)

CLINICAL DATA:

Age, gender, underlying illness, medications,
Immune suppression, surgery, central line, TPN,
Microbiologic culture data




Conclusions

« Diagnosis of infectious diseases can be enhanced by
“breaking tradition” from pathogen-based diagnostics

« Combining host and pathogen findings may provide
optimal means of classifying infected individuals

* Future directions: Prediction of therapeutic successes or
failures
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